Evaluation of boundary layer cloud parameterizations in the ECHAM5 general...

Nam, C. C. W., J. Quaas, R. Neggers, C. S. Drian, and F. Isotta (2014), Evaluation of boundary layer cloud parameterizations in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data, J. Adv. Modeling Earth Syst., 6, 300-314, doi:10.1002/2013MS000277.
Abstract: 

Three different boundary layer cloud models are incorporated into the ECHAM5 general circulation model (GCM) and compared to CloudSat and CALIPSO satellite observations. The first boundary layer model builds upon the standard Tiedtke (1989) parameterization for shallow convection with an adapted convective trigger; the second is a bulk parameterization of the effects of transient shallow cumulus clouds; and lastly the Dual Mass Flux (DMF) scheme adjusted to better represent shallow convection. The three schemes improved (Sub)Tropical oceanic low-level cloud cover, however, the fraction of low-level cloud cover remains underestimated compared to CALIPSO observations. The representation of precipitation was improved by all schemes as they reduced the frequency of light intensity events <0.01 mm d21, which were found to dominate the radar reflectivity histograms as well as be the greatest source of differences between ECHAM5 and CloudSat radar reflectivity histograms. For both lidar and radar diagnostics, the differences amongst the schemes are smaller than the differences compared to observations. While the DMF approach remains experimental, as its top-of-atmosphere radiative balance has not been retuned, it shows the most promise in producing nonprecipitating boundary layer clouds. With its internally consistent boundary layer scheme that uses the same bimodal joint distribution with a diffusive and an updraft component for clouds and turbulent transport, the ECHAM5_DMF produces the most realistic boundary layer depth as indicated by the cloud field. In addition, it reduced the frequency of large-scale precipitation intensities of <0.01 mm d21 the greatest. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

PDF of Publication: 
Download from publisher's website.
Mission: 
CloudSat