This page lists the most recently-uploaded publications that have been added to the ESD Publications database. Select one or more Research Program(s) to filter the list.

Publication Citation Research Program(s) Updated date
Prather, M., H. Guo, and X. Zhu (2023), Deconstruction of tropospheric chemical reactivity using aircraft measurements: the Atmospheric Tomography Mission (ATom) data, Earth Syst. Sci. Data, 15, 1-51, doi:10.5194/essd-15-1-2023. , ACMAP, TCP 7/28/2023
Feng, Y., et al. (2022), Global Dust Cycle and Direct Radiative Effect in E3SM Version 1: Impact of Increasing Model Resolution, J. Adv. Modeling Earth Syst.. RSP, 7/28/2023
Westberry, T. K., et al. (2023), Atmospheric nourishment of global ocean ecosystems, Science, 380, 515-519, doi:10.1126/science.abq5252. OBB, RSP 7/28/2023
Song, Q., et al. (2021), Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: regional and interannual variability, Atmos. Chem. Phys., 21, 13369-13395, doi:10.5194/acp-21-13369-2021. RSP 7/28/2023
Kim, H., et al. (2023), Observed versus simulated OH reactivity during KORUS-AQ campaign: Implications for emission inventory and chemical environment in East Asia, KORUS-AQ campaign. Elem Sci Anth, 10, 1-26, doi:https. , TCP 7/28/2023
Yu, H., et al. (2021), Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020, Atmos. Chem. Phys., 21, 12359-12383, doi:10.5194/acp-21-12359-2021. ACMAP, RSP 7/28/2023
Zheng, J., et al. (2022), The thermal infrared optical depth of mineral dust retrieved from integrated CALIOP and IIR observations, Remote Sensing of Environment, 270, 112841, doi:10.1016/j.rse.2021.112841. RSP 7/28/2023
Wang, Y., et al. (2023), Elucidating climatic drivers of photosynthesis by tropical forests,  wileyonlinelibrary.com/journal/gcb, 1-15, doi:10.1111/gcb.16837. 7/28/2023
Luis, K., et al. (2023), First Light Demonstration of Red Solar Induced Fluorescence for Harmful Algal Bloom Monitoring, Geophys. Res. Lett.. 7/28/2023
Humphrey, V., and C. Frankenberg (2023), Continuous ground monitoring of vegetation optical depth and water content with GPS signals, Biogeosciences, doi:10.5194/bg-20-1789-2023. 7/28/2023
Song, Q., et al. (2023), Size-resolved dust direct radiative effect efficiency derived from satellite observations, Atmos. Chem. Phys., doi:10.5194/acp-22-13115-2022. RSP 7/28/2023
Yin, Y., et al. (2023), Authors, some Unequal exposure to heatwaves in Los Angeles: Impact rights reserved; exclusive licensee of uneven green spaces American Association for the Advancement of Science. No claim to, Yin et al., Sci. Adv., 9, 2023. 7/28/2023
Yang, A., et al. (2022), Global premature mortality by dust and pollution PM2.5 estimated from aerosol reanalysis of the modern-era retrospective analysis for research and applications, version 2, Frontiers in Environmental Science, 10, 975755, doi:10.3389/fenvs.2022.975755. , ACMAP 7/28/2023
Li, C., et al. (2022), A new machine-learning-based analysis for improving satellite-retrieved atmospheric composition data: OMI SO2 as an example, Atmos. Meas. Tech., 15, 5497-5514, doi:10.5194/amt-15-5497-2022. , ACMAP 7/28/2023
Varon, D. J., et al. (2023), Continuous weekly monitoring of methane emissions from the Permian Basin by inversion of TROPOMI satellite observations, Atmos. Chem. Phys., doi:10.5194/acp-23-7503-2023. CCEP 7/27/2023
Chen, Z., et al. (2023), Satellite quantification of methane emissions and oil–gas methane intensities from individual countries in the Middle East and North Africa: implications for climate action, Atmos. Chem. Phys., doi:10.5194/acp-23-5945-2023. CCEP 7/27/2023
Colombi, N. K., et al. (2023), Why is ozone in South Korea and the Seoul metropolitan area so high and increasing?, Atmos. Chem. Phys., doi:10.5194/acp-23-4031-2023. ACMAP, TCP 7/27/2023
Yang, L. H., et al. (2023), Tropospheric NO2 vertical profiles over South Korea and their relation to oxidant chemistry: implications for geostationary satellite retrievals and the observation of NO2 diurnal variation from space, Atmos. Chem. Phys., doi:10.5194/acp-23-2465-2023. ACMAP, TCP 7/27/2023
Dang, R., et al. (2023), Background nitrogen dioxide (NO2 ) over the United States and its implications for satellite observations and trends: effects of nitrate photolysis, aircraft, and open fires, Atmos. Chem. Phys., doi:10.5194/acp-23-6271-2023. ACMAP 7/27/2023
Lu, X., et al. (2023), RESEARCH ARTICLE | EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES OPEN ACCESS Observation-derived 2010-2019 trends in methane emissions and intensities from US oil and gas fields tied to activity metrics, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2217900120. CCEP 7/27/2023

Pages