This page lists the most recently-uploaded publications that have been added to the ESD Publications database. Select one or more Research Program(s) to filter the list.

Publication Citation Research Program(s) Updated date
Tang, W., et al. (2022), Effects of Fire Diurnal Variation and Plume Rise on U.S. Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0), J. Geophys. Res., 127, e2022JD036650, doi:10.1029/2022JD036650. TCP 8/2/2023
Liu, S., et al. (2022), Composition and reactivity of volatile organic compounds in the South Coast Air Basin and San Joaquin Valley of California, Atmos. Chem. Phys., 22, 10937-10954, doi:10.5194/acp-22-10937-2022. TCP 8/2/2023
Carter, T. S., et al. (2022), An improved representation of fire non-methane organic gases (NMOGs) in models: emissions to reactivity, Atmos. Chem. Phys., 22, 12093-12111, doi:10.5194/acp-22-12093-2022. TCP 10/24/2023
Jin, L., et al. (2023), Constraining emissions of volatile organic compounds from western US wildfires with WE-CAN and FIREX-AQ airborne observations, Atmos. Chem. Phys., doi:10.5194/acp-23-5969-2023. 8/2/2023
Berman, M., et al. (2023), Quantifying burned area of wildfires in the western United States from polar-orbiting and geostationary satellite active-fire detections, International Journal of Wildland Fire, 32, 665-678, doi:10.1071/WF22022. 8/2/2023
Ye, X., et al. (2020), Assessment of Satellite AOD during the 2020 Wildfire Season in the Western U.S., Wildfire Season in the Western U.S.. Remote Sens., 2022, 6113, doi:10.3390/rs14236113. 8/2/2023
Ye, X., et al. (2023), Assessing Vertical Allocation of Wildfire Smoke Emissions Using Observational Constraints From Airborne Lidar in the Western U.S., J. Geophys. Res.. 8/2/2023
Thapa, L., et al. (2023), Heat flux assumptions contribute to overestimation of wildfire smoke injection into the free troposphere, Nature, doi:10.1038/s43247-022-00563-x. 8/2/2023
Saide Peralta, et al. (2022), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175. 8/2/2023
Marshak, A., et al. (2023), Aerosol Properties in Cloudy Environments from Remote Sensing Observations, Bull. Am. Meteorol. Soc., 102, E2177-E2197, doi:10.1175/BAMS-D-20-0225.1. 8/1/2023
Silber, I., et al. (2022), The Earth Model Column Collaboratory (EMC2) v1.1: an open-source ground-based lidar and radar instrument simulator and subcolumn generator for large-scale models, Geosci. Model. Dev., 15, 901-927, doi:10.5194/gmd-15-901-2022. MAP 8/1/2023
Nazarenko, L. S., et al. (2022), Future climate change under SSP emission scenarios with GISS- E2.1, J. Adv. Modeling Earth Syst., 14, e2021MS002871, doi:10.1029/2021MS002871. MAP 8/1/2023
Diamond, M., et al. (2023), Cloud adjustments from large-scale smoke–circulation interactions strongly modulate the southeastern Atlantic stratocumulus-to-cumulus transition, Atmos. Chem. Phys., doi:10.5194/acp-22-12113-2022. RSP 8/1/2023
Alexandrov, M. D., et al. (2022), Markovian Statistical Model of Cloud Optical Thickness. Part I: Theory and Examples, J. Atmos. Sci., 79, 3315-3332, doi:10.1175/JAS-D-22-0125.1. RSP 8/1/2023
Painemal, D., et al. (2023), Wintertime Synoptic Patterns of Midlatitude Boundary Layer Clouds Over the Western North Atlantic: Climatology and Insights From In Situ ACTIVATE Observations, J. Geophys. Res., 128, e2022JD037725, doi:10.1029/2022JD037725. MAP 8/1/2023
Cesana, G., et al. (2023), An observation-based method to assess tropical stratocumulus and shallow cumulus clouds and feedbacks in CMIP6 and CMIP5 models, Environmental Research Communications, 5, 045001, doi:10.1088/2515-7620/acc78a. MAP 8/1/2023
Wen, G., and A. Marshak (2022), Precipitable Water Vapor Variation in the Clear-Cloud Transition Zone From the ARM Shortwave Spectrometer, IEEE Geosci. Remote Sens. Lett., 19, 1002005, doi:10.1109/LGRS.2021.3064334. 8/1/2023
Naud, C. M., et al. (2023), Automated identification of occluded sectors in midlatitude cyclones: Method and some climatological applications, Q. J. R. Meteorol. Soc., early on-line, doi:10.1002/qj.4491. ADP 7/31/2023
Crespo, J. A., C. M. Naud, and D. Posselt (2021), CYGNSS observations and analysis of low-latitude extratropical cyclones, J. Appl. Meteor. Climat., 60, 527-541, doi:10.1175/JAMC-D-20-0190.1. ADP 7/31/2023
Naud, C. M., J. A. Crespo, and D. Posselt (2021), On the relationship between CYGNSS surface heat fluxes and the lifecycle of low-latitude ocean extratropical cyclones, J. Appl. Meteor. Climat., 60, 1575-1590, doi:10.1175/JAMC-D-21-0074.1. ADP 7/31/2023

Pages