The ESD Publications website will be undergoing a major upgrade beginning Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Please plan to complete any critical activities before or after this time.
Publication Citation
Allen, D., et al. (2019), Lightning NOx Production in the Tropics as Determined Using OMI NO2 Retrieval and WWLLN Stroke Data, J. Geophys. Res., 124, 13,498-13,518, doi:10.1029/2018JD029824.
Bak, J., et al. (2019), Linearization of the effect of slit function changes for improving Ozone Monitoring Instrument ozone profile retrievals, Atmos. Meas. Tech., 12, 3777-3788, doi:10.5194/amt-12-3777-2019.
Coddington, O. M., et al. (2022), The TSIS-1 Hybrid Solar Reference Spectrum, Geophys. Res. Lett..
Dang, R., et al. (2023), Background nitrogen dioxide (NO2 ) over the United States and its implications for satellite observations and trends: effects of nitrate photolysis, aircraft, and open fires, Atmos. Chem. Phys., doi:10.5194/acp-23-6271-2023.
Satellite, N. O., et al. (2021), US COVID-19 Shutdown Demonstrates Importance of Background NO2 in Inferring NOx Emissions From, Geophys. Res. Lett..
Shah, V., et al. (2023), Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements, Atmos. Chem. Phys., doi:10.5194/acp-23-1227-2023.
Souri, A., et al. (2020), Quantifying the Impact of Excess Moisture From Transpiration From Crops on an Extreme Heat Wave Event in the Midwestern U.S.: A Top‐Down Constraint From Moderate Resolution Imaging Spectroradiometer Water Vapor Retrieval, J. Geophys. Res., 125, e2019JD031941, doi:10.1029/2019JD031941.
Souri, A., et al. (2022), Unraveling pathways of elevated ozone induced by the 2020 lockdown in Europe by an observationally constrained regional model using TROPOMI, Atmos. Chem. Phys., doi:10.5194/acp-21-18227-2021.
Wang, H., et al. (2019), Ozone Monitoring Instrument (OMI) Total Column Water Vapor version 4 validation and applications, Atmos. Meas. Tech., 12, 5183-5199, doi:10.5194/amt-12-5183-2019.
Wang, W., et al. (2022), A machine learning model to estimate ground-level ozone concentrations in California using TROPOMI data and high-resolution meteorology, Environment International, 158, 106917, doi:10.1016/j.envint.2021.106917.